8 марта 2008 г.

Великий Фибоначчи, через века на Форекс!

Всем привет!
Думаю что многие слышали такую фамилию как Фибоначчи, хотя и не задумывались над тем, что это за фрукт и с чем его едят... Линии, Временные зоны, Веер, Дуги, Расширение - думаю далеко не полный перечень используемый на форексе. Лично я использую в основном Линии и Расширение. Не хочу в этом посте вдаваться в то как использовать на Форексе, Фьючерсах, Индексах, или Акциях - инструменты фибоначчи, просто хочу написать что это был за человек и чем он прославился в свое время...ну а к форексу я думаю мы еще вернемся!

   История цифр на Западе началась в 1202 году, когда подходило к концу строительство Шартрского кафедрального собора и завершался третий год правления английского короля Джона. В этом году в Италии появилась книга, озаглавленная “Liber Abaci”, или «Книга о счётах». Все ее пятнадцать глав были написаны от руки – ведь до изобретения книгопечатания оставалось почти триста лет. Ее автору Леонардо Пизано было всего двадцать семь лет, и он был очень удачливым человеком: его книга получила одобрение самого императора Священной Римской империи Фридриха II О лучшем нельзя было и мечтать.
    Большую часть своей жизни Леонардо Пизано был известен как Фибоначчи, под этим именем он и вошел в историю. Его отца звали Боначио, а его сын Боначио, т.е Фибоначчи. Боначио означает ‘простак’, а Фибоначчи – ‘чурбан’. Однако Боначио, по-видимому, был не совсем простаком, поскольку он представлял Пизу в качестве консула во многих городах, а его сын Леонардо тем более не был чурбаном.
     Фибоначчи был подвигнут к написанию «Liber Abaci» во время визита в Багио, процветающий алжирский город, где его отец пребывал в качестве пизанского консула. Там он столкнулся с чудесами индо-арабской системы счисления, перенесенной арабскими математиками на Запад во время крестовых походов. Ознакомившись со всеми вычислениями, выполняемыми в рамках этой системы, которые даже не снились математикам, использовавшим римскую систему счисления, он постарался изучать ее как можно более досконально. Чтобы поучится у арабских математиков, живших по берегам Средиземного моря, он предпринял путешествие в Египет, Сирию, Грецию, Сицилию и Прованс.
     В результате появилась книга, необычная со всех точек зрения. «Liber Abaci» открыла европейцам новый мир, в котором для представления чисел вместо букв, применяемых в еврейской, греческой и римской системах счисления, использовались цифры. Книга быстро привлекла внимание математиков как в Италии, так и по всей Европе.
     Каким бы остроумным и оригинальным ни было содержание книги Фибоначчи, она наверняка не смогла бы привлечь к себе много внимания за пределами узкого круга знатоков математики, если бы в ней излагались только теоретические вопросы. Огромный успех книги объяснялся тем, что Фибоначчи насытил ее примерами практического применения изложенных в ней методов. Там, в частности, описаны и проиллюстрированы примерами многие новшества, которые благодаря новой системе счисления удалось применить в бухгалтерских расчетах, таких, как представление размера прибыли, операций с обменом денег, конвертацией мер и весов и, хотя ростовщичестро было еще запрещено во многих местах, исчисления процентных выплат.
    О том, насколько сильный ажиотаж вызвало появление книги Фибоначчи, можно судить по тому, что от нее пришел в восторг даже такой блистательный и творческий человек, каким был император Фридрих.
       Фибоначчи широко известен благодаря короткому отрывку из «Liber Abaci», содержание которого производит впечатление математического чуда. В отрывке обсуждается задача о том, сколько кроликов родится в течении года от одной пары кроликов в предположении, что каждый месяц каждая пара рождает другую пару и что кролики начинают рожать с двухмесячного возраста. Фибоначчи доказывает, что в этом случае потомство исходной пары к концу года достигнет 233 пар.
      Дальше он утверждает нечто еще более интересное. Предположим, что первая пара кроликов не будет размножатся до второго месяца. К четвертому месяцу начнут размножаться их первые двое отпрысков. Коль скоро процесс продолжится, числа пар в конце каждого месяца будут такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Здесь каждое последующее число является суммой двух предыдущих. Если кролики продолжат в том же духе в течении ста месяцев, число пар достигнет 354 224 848 179 261 915 075. Этим не исчерпываются изумительные свойства чисел Фибоначчи. Разделим каждое из них на следующее за ним. Начиная с 3, будем получать 0,625. После 89 ответ будет 0,618; с увеличение чисел в ответе будет возрастать лишь число десятичных знаков после запятой. ( Одним из удивительных свойств этих чисел является то, что число 0,618 получается, если извлечь квадратный корень из 5, который равен 2,24, вычесть 1 и разделить на 2; это алгебраическое выражение входит в формулу, представляющую числа Фибоначчи).
       Разделим теперь каждое число, начиная с 2, на предыдущее. Будем получать1,6. После 144 ответ будет 1,618. Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи ООН в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной составляет 61,8% от длины под пересечением. Золотая пропорция обнаруживается также в природных явлениях – в цветочных лепестках, в листьях артишока, черешках пальмовых листьев. Отношение длины части тела человека выше пупка к длине ниже пупка у нормально сложенного человека равно 0,618. Длина фаланг пальцев, если последовательно идти от кончиков до ладони, соотносится так же. ( Точнее говоря, по формуле Фибоначчи, отношение меньшей части к большей равно отношению большей части к целому).

     Одним из наиболее романтичных воплощений отношения Фибоначчи являются пропорции и форма чудесной спирали. На приведенном рисунке видно, как она формируется на основе ряда квадратов, длины сторон которых определяются рядом Фибоначчи. Процесс начинается с построения двух маленьких квадратов одинакового размера.

 
Нам знакома эта спираль, повторяемая в форме некоторых галактик, бараньего рога, многих морских раковин или гребешков океанских волн, по которым скользят любители серфинга. Способ построения делает ее форму неизменной, и она не зависит от размера первого квадрата, с которого началось построение: форма с ростом не меняется.

0 Comments: